While traveling in a straight line, an object with a mass of ? kg speeds up from a velocity of ? m/s to a velocity of ? m/s while being displaced ? m. What would be the net force on this object?

Solution:

v_{f}^{2} = v_{i}^{2} + 2ad

v_{f}^{2} = v_{i}^{2} + 2(F/m)d

F = (m)(v_{f}^{2} - v_{i}^{2}) / (2d)

F = (? kg)((? m/s)^{2} - (? m/s)^{2} / (2(? m))

F = (? kg)(? m^{2}/s^{2} - ? m^{2}/s^{2})
/ (? m)

F = (? kg)(? m^{2}/s^{2}) / (? m)

F = (? kg-m^{2}/s^{2}) / (? m)

F = ? N

Note:

a = F / m

a = (? N) / (? kg)

a = ? m/s^{2}

m =
? kg
v_{i} =
? m/s
v_{f} =
? m/s
d =
? m